Cerebral Cortex, 2022, 1-15

https://doi.org/10.1093/cercor/bhac479
Original Article

OXFORD

Context-independent scaling of neural responses to task
difficulty in the multiple-demand network

Tanya Wen'*, Tobias Egner?:2

1Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States,
2Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States

*Corresponding author: Center for Cognitive Neuroscience, Duke University, LSRC, Box 90999, Durham, NC 27708, United States. Email: tanya.wen@duke.edu

The multiple-demand (MD) network is sensitive to many aspects of cognitive demand, showing increased activation with more difficult
tasks. However, it is currently unknown whether the MD network is modulated by the context in which task difficulty is experienced.
Using functional magnetic resonance imaging, we examined MD network responses to low, medium, and high difficulty arithmetic
problems within 2 cued contexts, an easy versus a hard set. The results showed that MD activity varied reliably with the absolute
difficulty of a problem, independent of the context in which the problem was presented. Similarly, MD activity during task execution
was independent of the difficulty of the previous trial. Representational similarity analysis further supported that representational
distances in the MD network were consistent with a context-independent code. Finally, we identified several regions outside the MD
network that showed context-dependent coding, including the inferior parietal lobule, paracentral lobule, posterior insula, and large
areas of the visual cortex. In sum, a cognitive effort is processed by the MD network in a context-independent manner. We suggest that
this absolute coding of cognitive demand in the MD network reflects the limited range of task difficulty that can be supported by the

cognitive apparatus.
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Introduction

The multiple-demand (MD) network is a set of frontal and parietal
brain regions whose responses scale with cognitive demands,
exhibiting enhanced activity with increasing cognitive load or
difficulty across a diverse set of tasks (Duncan and Owen 2000;
Duncan 2010; Fedorenko et al. 2013; Duncan et al. 2020). To
account for this broad association with cognitive demand, the MD
network has been suggested to implement top-down control to
focus on the operations required for a current task, regardless of
the precise nature of those operations (Erez and Duncan 2015;
Jackson et al. 2017; Wen, Duncan, et al. 2020). However, as most
previous studies were limited to a single experimental context
in which difficulty was manipulated, a fundamental question
about the relationship between MD network activity and cognitive
effort remains unanswered: Is MD network activity shaped by the
context in which a given level of task difficulty is experienced?
On the one hand, several lines of research speak in favor of the
possibility that difficulty or effort could be coded in a content-
sensitive manner in the MD network. First, the MD network has
been implicated in the flexible coding of context-dependent task
rules, producing distinct responses to the same input data, such
as judging the dominant color or motion direction of a cloud of
moving dots (Roy et al. 2010; Mante et al. 2013; Flesch et al. 2022).
Thus, it seems plausible that the same level of task difficulty
could produce different responses under different contexts in this
network. Second, context-dependent coding—sometimes referred
to as “range adaptation”—is commonly observed in value-based
decisions and perceptual processing (Nieuwenhuis et al. 2005;
Elliott et al. 2008; Carandini and Heeger 2011; Cheadle et al. 2014;
Cox and Kable 2014; Palminteri et al. 2015; Murai et al. 2016;
Bavard et al. 2018, 2021; Hunter and Daw 2021). For example,

Nieuwenhuis et al. (2005) created 2 contexts in which participants
would either always win or always lose money. Within each con-
text, there were also 3 possible outcomes, worst (+0¢/—40¢), inter-
mediate (+30¢/—20¢), and best (+60¢/—0¢). The authors found
that activity in reward-sensitive areas scaled positively with out-
come value (best > intermediate > worst) in each context, but
that activity levels for the 3 outcomes were comparable between
contexts, despite the large difference in the objective value of
these outcomes. In other words, neural reward coding appears
to be relative, such that an equivalent absolute value will elicit
a greater response if it is a relatively good than if it is a relatively
bad outcome in the current context.

Range adaptation in reward coding is relevant to the MD
network because of its association with cognitive effort, whose
recruitment is commonly conceptualized as directly proportional
to prospective reward (e.g. Shenhav et al. 2013). Specifically,
previous work has shown that MD regions may be divided into 2
closely coupled networks centered around the frontoparietal and
cingular-opercular network (Dosenbach et al. 2008; Crittenden
et al. 2016; Shashidhara et al. 2019), with the former consisting
several distinct regions of the middle and posterior prefrontal
cortex (mPFC and pMFC), posterior-dorsal lateral frontal cortex
(pdLFC), and the intraparietal sulcus (IPS), while the latter consists
of the anterior medial prefrontal cortex (aMFC), anterior insula
(Al), and dorsal anterior cingulate cortex (ACC). Recent studies
have identified overlapping regions involved in cognitive effort
and the anticipation and processing of reward in the MD network,
especially in cingular-opercular regions (Prévost et al. 2010;
Shashidhara et al. 2019), including the AI (Lallement et al. 2014;
Chong et al. 2017) and ACC (Croxson et al. 2009; Vassena et al.
2014; Chong et al. 2017). In particular, the ACC has been proposed
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to play a critical role in allocating cognitive control based on the
evaluation of the reward and costs that can be expected from
a control-demanding task, referred to as the expected value of
control (Shenhav et al. 2013). Furthermore, in effort discounting
tasks, researchers have identified that frontoparietal regions track
shared variance between subjective value and difficulty (Massar
et al. 2015; Chong et al. 2017; Westbrook et al. 2019). In line with
studies suggesting a close relationship between effort and reward
of cognitive actions (Kool et al. 2010; Otto and Vassena 2021), it
is therefore plausible that MD activity in response to difficulty
could also dynamically adapt according to the range of difficulty
levels within a given task context, especially if it is involved in
signaling difficulty.

On the other hand, an argument can also be made against
context-dependent coding of difficulty. While humans can easily
represent near-unlimited bounds of value (i.e. $0.01, $10, $10,000,
etc.), and this large range may promote contextual adaptation
in terms of neural coding, the range of difficulty of information
processing we can handle seems to be rather limited (Marois and
Ivanoff 2005). Capacity limits in cognitive processing include the
number of items we can attend to (Chun and Marois 2002) and
hold in working memory (e.g. Cowan 2001), processing bottlenecks
that hinder parallel task execution (Pashler 1994), and the speed
with which information can be encoded into working memory
(Dux and Marois 2009; Zivony and Lamy 2021). Various authors
have linked these capacity limitations to the MD network (Marois
and Ivanoff 2005; Watanabe and Funahashi 2014; Duncan et al.
2020) and, corresponding to the limited range of cognitive pro-
cessing, the MD network’s capacity to adapt its response to a
wide range of difficulty levels may also be limited. Specifically,
several studies have found that, rather than showing a monotonic
increase with task difficulty, MD activity displayed an inverted
U-shape response (Callicott et al. 1999; Linden et al. 2003) or a
plateau after a certain difficulty level (Todd and Marois 2004;
Marois and Ivanoff 2005; Mitchell and Cusack 2008), especially
when performance improvement becomes impossible even with
maximal attention. Thus, activity in the MD network may reflect
the investment of attentional resources rather than objective
or even subjective difficulty per se (Han and Marois 2013; Wen
et al. 2018). If MD activity reflects resource investment, then
this activity should increase whenever demand increases, but it
should be unaltered by the difficulty of other tasks within its
shared context.

The current experiment was designed to tease apart these
2 possibilities by creating 2 difficulty contexts (easy and hard).
Within each context, we manipulated difficulty over 3 levels (low,
medium, and high) with basic arithmetic problems. Crucially, the
highest difficulty level within the easy context was matched with
the lowest level in the hard context. If MD activity were context-
dependent, we would expect the MD network to adapt its range
of activation according to relative task difficulty within each con-
text. Accordingly, the MD network would show a different neural
response to the matched difficulty conditions across contexts,
with greater activity for the high difficulty level in the easy con-
text than for the low difficulty level in the hard context. It is also
possible for MD activity to be sensitive to both context-dependent
(relative) difficulty and context-independent (absolute) difficulty,
and in this case, we would expect an additive mix in the activation
response. As another test of context-dependence, we examined
whether MD activity during a given trial is sensitive to the diffi-
culty level of the previous trial. Complementing these univariate
analyses, we explored representational distances of difficulty in
the MD network with RSA. Finally, a whole-brain analysis was

conducted to identify additional regions that may differentially
represent context-dependent and context-independent responses
(Grabenhorst and Rolls 2009) to difficulty.

Materials and methods
Participants

The study design was based on Nieuwenhuis et al. (2005), who
observed significant range adaptation effects in reward process-
ing with a sample size of 14 individuals. We aimed to increase
power via a larger sample and targeted a minimum sample size
of 24, which is typical for functional imaging studies relating to
the MD network (e.g. Shashidhara et al. 2019). Twenty-five partic-
ipants (9 males, 16 females; ages 18-35, mean =25.01, SD=4.11)
were included in the analysis of this experiment. Tiwo additional
participants were excluded due to low accuracy and excessive
motion during the scans (mean accuracy <70% and/or motion
>4 mm on one or more runs). All participants were neurologically
healthy with normal or corrected-to-normal vision. Procedures
were conducted in accordance with ethical approval obtained
from the Duke University Health System Institutional Review
Committee, and participants provided written informed consent
before the start of the experiment.

Stimuli and task procedures

The experimental design was modeled closely on Nieuwenhuis
etal. (2005), but instead of reward, we manipulated task difficulty.
The study consisted of an online practice session and a main
experimental session in the scanner. The practice session was
performed on participants’ own computers within a week before
the main experiment. During both sessions, participants were
told that on each trial, they would be shown 3 doors from either
a blue set or a red set. They were informed that (i) one set of
doors contains more difficult problems than the other set and
(ii) within each set of doors, there would be 3 levels of difficulty
(low, medium, and high), and each door is associated with one
level of difficulty. Thus, the 2 sets of doors defined the 2 difficulty
contexts in the experiment. Additionally, participants were told
that before the beginning of each trial, the position of the doors
within the presented set would be shuffled, and they were given
an animation demo of the doors being shuffled during the instruc-
tions to incentivize participants to choose different locations.
Behind the “easy” set of doors, the math problems could be the
addition of (1: low difficulty) 2 single digits, with the constraint
of the sum not exceeding 10 (e.g. 3+ 1), (2: medium difficulty) a
single digit and a double digit, with the ones position requiring a
carryover (e.g. 94+ 8), or (3: high difficulty) 2 double digits, with
atleast one carryover (e.g. 26 + 57). Behind the “hard” set of doors,
the math problems could be (1: low difficulty) 2 double digits (e.g.
19+42), (2: medium difficulty) a double digit and a triple digit
(e.g. 925 +86), or (3: high difficulty) 2 triple digits (e.g. 7184 503),
all requiring at least one carryover. Thus, the high difficulty
condition in the easy set was equivalent to the low difficulty
condition in the hard set. The assignment of the red and blue
doors to easy versus difficult sets was counterbalanced across
participants.

Figure 1illustrates the structure of the experimental paradigm.
On each trial, participants were first shown 3 doors from one
set (i.e. the contextual cue) on the screen and had up to 2.5 s
to press 1 out of 3 buttons (the “8,” “9,” and “0” keys on their
keyboard during the online practice and the first 3 buttons of the
right-hand button box in the scanner) to select the left, center, or
right door. Participants were encouraged to respond to every trial;
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Fig. 1. [llustration of experimental paradigm, showing 2 trials. On each trial, participants were given a contextual cue in the form of a set of 3 colored
doors (blue or red, associated with easy or hard problems, counterbalanced across participants) and were asked to choose one door to enter. After
selecting a door, they were given a math problem from 1 of the 3 difficulty levels associated with that colored set and were asked to select the correct

answer among 3 choices.

however, if the participant did not respond within the time limit,
the computer would choose a door for them. As soon as a door was
chosen, the word “Chosen!” would be displayed along with arrows
indicating the selected door for the remainder of the 2.5 s and
an additional 1 s. This was then followed by a 1.5-s fixation cross.
Next, participants were presented with a screen displaying a math
problem in the center with 3 choices below. They were given up to
6 s to select the correct answer, using the same 3 buttons. After an
answer was chosen, participants would be shown a fixation cross
for the remainder of the duration and an additional 3 s before
moving on to the next trial.

The timing of the displays was the same for the online prac-
tice and the scanning sessions, except for that in the practice
session, participants were additionally given feedback after each
answer to a math problem (either “Too slow! Press the spacebar
to continue,” or “correct” or “incorrect” for 500 ms). To promote
learning of the associations between the colored doors and diffi-
culty context during the online practice session, we used a blocked
design (Flesch et al. 2018), where participants were given the
same set of doors for 9 consecutive trials in alternating blocks.
Participants performed a total of 54 practice trials and experi-
enced each set of doors and difficulty level an equal number of
times.

In the main experiment, participants performed 5 scanning
runs. Each run had a total of 37 trials, with the first trial being
a dummy trial. The 2 possible sets of doors and the 6 possible
difficulty conditions (5 levels) were varied on a trial-to-trial basis
and occurred equally often across the experiment. The probability
of switching from one condition to any other was equated, such
that all possible transitions occurred equally often across the

experiment. Although participants were told that different doors
led to different math problems, in reality, the order of difficulty
conditions was predetermined and the sequence of difficulty
conditions was unaffected by their response choices. Participants
were not given feedback after each trial but were shown an overall
accuracy score after the end of each run.

Functional magnetic resonance imaging data
acquisition

Scanning took placein a 3T Siemens Prisma Scanner at the Center
for Advanced Magnetic Resonance Development at Duke Univer-
sity Hospital. Functional images were acquired using a multiband
gradient-echo echoplanar imaging (EPI) pulse sequence (time
repetition [TR] = 2,000 ms, time echo [TE] =30 ms, flip angle = 90°,
128 x 128 matrices, slice thickness=2 mm, no gap, voxel size
2x2x2 mm, 69 axial slices covering the entire brain, 3 slices
acquired at once). The first 5 volumes served as dummy scans
and were discarded to avoid T1 equilibrium effects. A reverse-
phase encoding image was collected at the end of the experiment.
High-resolution anatomical T1-weighted images were acquired
for each participant using a 3D MPRAGE sequence (192 axial
slices, TR=2,250 ms, time to inversion=900 ms, TE=3.12 ms,
flip angle=9°, field of view=256x256 mm, 1-mm isotropic
resolution).

Preprocessing

Preprocessing was performed using fMRIPrep 20.2.3 (Esteban
et al. 2018; RRID:SCR_016216), which is based on Nipype 1.6.1
(Gorgolewski et al. 2011; RRID:SCR_002502).

2202 Jeqwieoa( 7). uo 1senb AQ 580 1689/6/70BYA/102182/S601 "0 | /I0P/3]0IE-80UBAPE/I02199/W09°dno"oilWepeoe//:sdiy WoJj pepeojumoq



4 | Cerebral Cortex, 2022

Anatomical data preprocessing

The T1-weighted (T1w) image was corrected for intensity non-
uniformity (INU) with N4BiasFieldCorrection (Tustison et al. 2010),
distributed with ANTSs 2.3.3 (Avants et al. 2008; RRID:SCR_004757),
and used as T1w-reference throughout the workflow. The T1w-
reference was then skull-stripped with a Nipype implementation
of the antsBrainExtraction.sh workflow (from ANTs), using
OASIS30ANTS as the target template. Brain tissue segmentation
of cerebrospinal fluid (CSF), white matter (WM), and gray
matter (GM) was performed on the brain-extracted T1w using
fast (FSL 5.0.9, RRID:SCR_002823; Zhang et al. 2001). Brain
surfaces were reconstructed using recon-all (FreeSurfer 6.0.1,
RRID:SCR_001847; Dale et al. 1999), and the brain mask estimated
previously was refined with a custom variation of the method to
reconcile ANTs-derived and FreeSurfer-derived segmentations
of the cortical gray matter of Mindboggle (RRID:SCR_002438;
Klein et al. 2017). Volume-based spatial normalization to one
standard space (MNI152NLin2009cAsym) was performed through
nonlinear registration with antsRegistration (ANTs 2.3.3), using
brain-extracted versions of both Tlw reference and the Tlw
template. The following template was selected for spatial
normalization: ICBM 152 Nonlinear Asymmetrical template
version 2009¢ (Fonov et al. 2009; RRID:SCR_008796; TemplateFlow
ID: MNI152NLin2009cAsym).

Functional data preprocessing

For each of the 5 blood oxygen level-dependent (BOLD) runs per
subject, the following preprocessing was performed. First, a refer-
ence volume and its skull-stripped version were generated using
a custom methodology of fMRIPrep. A BO-nonuniformity map (or
fieldmap) was estimated based on 2 (or more) EPI references with
opposing phase-encoding directions, with 3dQwarp (Cox and Hyde
1997; AFNI 20160207). Based on the estimated susceptibility dis-
tortion, a corrected EPI reference was calculated for a more accu-
rate co-registration with the anatomical reference. The BOLD ref-
erence was then co-registered to the T1w reference using bbregis-
ter (FreeSurfer), which implements boundary-based registration
(Greve and Fischl 2009). Co-registration was configured with 6
degrees of freedom. Head motion parameters with respect to
the BOLD reference (transformation matrices, and 6 correspond-
ing rotation and translation parameters) are estimated before
any spatiotemporal filtering using mcflirt (FSL 5.0.9; Jenkinson
et al. 2002). BOLD runs were slice-time corrected using 3dTshift
from AFNI 20160207 (Cox and Hyde 1997; RRID:SCR_005927). The
BOLD time series was resampled into standard space, generating
a preprocessed BOLD run in MNI152NLin2009cAsym space. All
resamplings were performed with a single interpolation step by
composing all the pertinent transformations (i.e. head motion
transform matrices, susceptibility distortion correction, and co-
registrations to anatomical and output spaces). Gridded (volu-
metric) resamplings were performed using antsApplyTransforms
(ANTs), configured with Lanczos interpolation to minimize the
smoothing effects of other kernels (Lanczos 1964).

Prior to functional magnetic resonance imaging (fMRI) anal-
yses, we removed the first 5 TRs in each run. The functional
data were high-pass filtered with a cutoff at 1/128 Hz. Spatial
smoothing of 10 mm full width at half maximum (FWHM) was
applied for the univariate whole-brain analysis, but not for the
univariate region of interest (ROI) analysis or the representation
similarity analysis (RSA). For all the analyses, we controlled the
false discovery rate (FDR) to correct for multiple comparisons
across ROIs as well as the whole brain.

Regions of interest

For the primary analysis, we focused on the MD network (see
Figs. 4, 6,and 7). The MD network was based on data from
Fedorenko et al. (2013), selecting frontoparietal regions responsive
to cognitive demands across 7 diverse tasks (http://imaging.
mrc-cbu.cam.ac.uk/imaging/MDsystem). MD component ROIs
were separated as described in Mitchell et al. (2016), based on
proximity to local maxima in the data of Fedorenko et al. (2013),
and included aMFG, mMFG, pMFG, pdLFC, IPS, Al, and ACC. As
MD activation tends to be largely symmetrical, left and right
hemisphere ROIs were combined to form bilateral ROIs.

Univariate activation across difficulty conditions

Statistical analyses were performed first at the individual level,
using a general linear model (GLM). In our first GLM, we had
a regressor for each type of math problem that was answered
correctly (6 regressors: 2 contexts x 3 difficulty levels). Math
problems that were answered incorrectly were modeled with a
separate regressor. All math problems were modeled with the
duration of each trial’s response time (or the maximum 6 s
if participants failed to provide a response). This provided an
estimate of each voxel’s response per unit time and thus accounts
for response time differences between conditions (Henson, 2007;
Grinband et al. 2008; Woolgar et al. 2014). This approach was used
in previous univariate and multivariate fMRI studies that had
considerable reaction time differences resulting from differing
task difficulty across conditions (e.g. Woolgar, Hampshire, et al.
2011a; Woolgar, Thompson, et al. 2011b; Crittenden and Duncan
2014; Wen et al. 2018) and has been shown to provide robust
statistical power, reliability, and interpretability of fMRI results
(Grinband et al. 2008). We additionally had regressors for each
set of contextual cues (i.e. blue and red doors; 2 regressors).
The contextual cues were modeled with a fixed 3.5 s duration.
Each regressor was convolved with the canonical hemodynamic
response function. The 6 motion parameters and block means
were included as regressors of no interest. The average beta
estimates for individual participants were entered into a random-
effects group analysis.

One possibility is that the MD network shows context-
independent activity (Fig. 2Ai), such that MD activity would
increase linearly with increased absolute difficulty of the math
problems, and there would be an equivalent response to the 2
double-digit additions (the high difficulty level in the easy set and
the low difficulty level in the hard set), regardless whether it was
experienced in the easy set or hard set. Another possibility is that
the MD network shows context-dependent activity (Fig. 2Aii), such
that activation would be scaled within each set of doors. In this
scenario, we would expect the low, medium, and high difficulty
conditions to elicit similar neural responses across the 2 sets, such
that the 2 double-digit additions show a greater neural response
when experienced in the easy set (in which it is the high difficulty
condition) than when it is experienced in the hard set (in which it
is the low difficulty condition). Finally, it is possible that the MD
network is sensitive to both relative difficulty within a context
and absolute difficulty that is independent of context, in which
case we would expect MD activation to reflect an additive mix of
the former two (Fig. 2Aiii). To evaluate these possibilities, for each
participant, we fit a linear regression with a regressor modeling
absolute difficulty ([1,2,3,3,4,5]) and a regressor modeling relative
difficulty ([1,3,5,1,3,5]) to their neural response to the 6 types of
math problems. The individual participants’ beta estimates were
then entered into a random-effects group analysis.
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Fig. 2. Predictions of (A) univariate activations for regions that are (i) context-independent, (ii) context-dependent, and (iii) an additive mix of the two;
and (B) RDMs of (i) context-independent and (ii) context-dependent coding in difficulty processing.

Univariate activation when switching difficulty
contexts

In our second GLM, we modeled each imperative trial according
to its current as well as previous difficulty context (i.e. Easy-Easy,
Hard-Easy, Hard-Hard, Easy-Hard; 4 regressors). Each trial dura-
tion was modeled according to participants’ response times. We
also modeled the contextual cues according to their current and
previous conditions (i.e. Easy-Easy, Hard-Easy, Hard-Hard, Easy-
Hard; 4 regressors). The context cues were modeled with a fixed
3.5 s duration. Math problems that were answered incorrectly
were modeled using a separate regressor. The first imperative
trial and first cue (which did not have a previous trial to switch
from) were modeled individually as a regressor of no interest
(2 regressors). Each regressor was convolved with the canonical

hemodynamic response function. The 6 motion parameters and
block means were included as regressors of no interest. The
average beta estimates for individual participants were entered
into a random-effects group analysis.

A priori, we were particularly interested in the following con-
trasts: (1) switching from a problem in the hard set to a problem
in the easy set versus repeating a problem in the easy set, and
(2) switching from a problem in the easy set to a problem in
the hard set versus repeating a problem in the hard set. One
demonstration of context-dependent coding would be sensitivity
to previous trial experience (Akitsuki et al. 2003; Nakahara et al.
2004). We hypothesized that if a participant becomes more effi-
cient at solving hard problems because of a previous experience
with a hard trial, then we would expect decreased MD activity
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when switching from the hard set to the easy set (Garavan et al.
2000; Landau et al. 2004). On the other hand, we may expect
increased MD activity when switching from the easy set to the
hard set, as relative task difficulty would increase (Botvinick et al.
1999; Carter et al. 2000; Durston et al. 2003; Kerns et al. 2004).
Thus, we would expect an interaction between switching versus
repeating a set, and whether the current set is easy or hard.

RSA analysis

We performed RSA using the linear discriminant contrast (LDC) to
quantify dissimilarities between activation patterns. The analysis
used the RSA toolbox (Nili et al. 2014), in conjunction with in-
house software. The LDC was chosen because it is multivariate
noise-normalized, potentially increasing sensitivity, and is a cross-
validated measure, which is distributed around zero when the
true distance is zero (Walther et al. 2016). An average activity
pattern for each type of math problem was obtained from the first
GLM above, thus resulting in 6 patterns in total for each run. For
every possible combination of 2 runs, and for each pair of patterns,
the patterns from run 1 were projected onto a Fisher discriminant
fitted for run 2, with the difference between the projected patterns
providing a cross-validated estimate of a squared Mahalanobis
distance. This was repeated projecting run 2 onto run 1, and
we took the average as the dissimilarity measure between the 2
patterns. We then averaged the result from each pair of runs. All
pairs of pattern dissimilarities, therefore, formed a symmetrical
representational dissimilarity matrix (RDM) with zeros on the
diagonal. This was done individually on the MD ROIs as well as
in a whole-brain analysis using a 10 mm searchlight and then
smoothed with a 10 mm FWHM before the group analysis. The
average RDMs of MD ROIs are plotted in Supplementary Fig. S4.

We constructed 2 model RDMs to probe for the existence
of absolute, context-independent difficulty coding and relative,
context-dependent difficulty coding (Fig. 2B). In each RDM, each
cell represents the dissimilarity between the corresponding 2
types of math problems. In the context-independent coding RDM,
dissimilarity increases as the difference in difficulty of the math
problems increases (Fig. 2Bi). In the context-dependent coding
RDM, the low, medium, and high difficulty levels of each set
are represented with the smallest dissimilarity, and dissimilar-
ity increases according to the distance between these 3 levels
(Fig. 2Bii). We note that the 2 model RDMs have little correlation
with each other (Spearman’s p =—0.04, P=0.90).

Since the stimuli used in the different conditions also differ
in visual similarity, for each participant, we constructed an addi-
tional model RDM estimating the pixel-level correlation distance
between the mean math stimuli of the different conditions as
they were presented on screen. The average pixel RDM across
participants is illustrated in Supplementary Fig. S3. The rank
correlations between the pixel RDM and context-independent
RDM (Spearman’s p=0.36, P=0.19) and context-dependent RDM
(Spearman’s p=—0.11, P=0.69) were not statistically significant.
The above 3 model RDMs, as well as the brain RDM, were rank-
transformed and entered into the following regression:

RDMbrain =Bo+B1- RDMcontext—independent + B2 RDMcontext—dependent

+Bs- RDMpixel

Rank transformation was performed because we did not want
to assume a linear relationship between the dissimilarities (Nili
et al. 2014). Beta coefficients were estimated for each participant,
and one-tailed t-tests against zero were then performed to identify

ROIs or regions that showed a significant relationship between the
brain RDM and model RDMs.

Results
Behavioral results

As shown in Fig. 3A, accuracy decreased while reaction times
increased with difficulty of the math problem. Overall, accuracy
decreased from a mean of 98.84%, to a mean of 72.19% from
the easiest (2 single digits) to the hardest (2 triple digits) diffi-
culty level. Pairwise t-tests showed no differences between the 2
matched levels, that is, the high difficulty condition in the easy set
and the low difficulty condition in the hard set (t=0.36, P=0.72).
There were significant differences between all other trial types (all
ts>2.69, all Ps <0.02; FDR corrected for multiple comparisons).
The average median reaction time increased from 0.97 s in the
easiest level to 4.12 s in the hardest level. Pairwise t-tests showed
significant differences between all trial types, with the smallest
difference occurring between the matched difficulty conditions
where participants were slightly slower in responding to the low
difficulty level in the hard set compared to the high difficulty
level in the easy set (all ts > 2.64, all Ps <0.02; FDR corrected for
multiple comparisons).

We next examined whether there were any behavioral signa-
tures of context dependence based on previously experienced
difficulty contexts. First, we grouped all trials according to
whether they belonged to the hard or easy set and which set
preceded them. A 2-way repeated measures ANOVA with factors
of previous difficulty (easy vs. hard) x current difficulty (easy vs.
hard) was performed on the accuracy data and median reaction
time of correct trials, respectively (Fig. 3B). For accuracy, we found
a significant main effect of current difficulty (F(1,24)=91.68,
P <0.001), which is caused by the hard set having lower accuracy
than the easy set. There was no main effect of previous difficulty
(F(1,24) <0.01, P=0.97) or previous difficulty x current difficulty
interaction (F(1,24) <0.01, P=0.96). For reaction time, we found
a significant main effect of current difficulty (F(1,24)=1755.35,
P <0.001), with longer reaction times for the hard set. There was
no main effect of previous difficulty (F(1,24) =0.29, P=0.59) and no
previous difficulty x current difficulty interaction (F(1,24)=1.24,
P=0.28). Thus, when analyzing sequence effects, we observed no
context dependence in accuracy or RT data.

Univariate activation across difficulty conditions
ROI analysis

Average beta estimates of each difficulty level from bilateral
MD regions are shown in Fig. 4. We also extracted the average
activation for each of the 6 difficulty conditions from each
participant using a combined MD network ROI. We first ran
a context (easy vs. hard) x difficulty level (low, medium, and
high) repeated measures ANOVA to examine activity in the MD
network. Results showed a significant main effect of context
(F(1,24)=21.47,P <0.001) and a significant main effect of difficulty
level (F(2,48)=9.89,P < 0.001). There was also a context x difficulty
level interaction (F(2,48)=4.10, P=0.02). Pairwise t-tests across
the 6 difficulty conditions revealed several significant contrasts,
with increased absolute difficulty associated with increased MD
activation, although starting to plateau at the higher difficulty
levels (no significant difference between the medium and high
difficulty levels in the hard set (t=0.20, P=0.84)).

To compare across difficulty levels and ROIs, we conducted
a 3-way ANOVA with factors context (easy vs. hard), diffi-
culty level (low, medium, and high), and ROI (7 MD ROIs).
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This analysis showed a significant main effect of context
(F(1,24)=15.31, P<0.001), a significant main effect of difficulty
level (F(2,48)=5.71, P<0.01), and a significant main effect of
ROI (F(6,144)=64.81, P <0.001). The main effect of context was
driven by increased MD activity in the hard compared to easy
context, and the main effect of difficulty was driven by increasing
MD activity with higher difficulty levels. There was a context
x ROI interaction (F(6,144)=7.20, P <0.001) and difficulty level
x ROI interaction (F(12,288)=5.80, P <0.001), but no context x
difficulty level interaction (F(2,48)=2.75, P=0.07). Finally, there
was a context x difficulty level x ROl interaction (F(12,288) =6.34,
P <0.001). Pairwise t-tests across the 6 difficulty conditions
revealed that in most of the MD ROIs, there was a general increase
and plateau in activation as difficulty increased, except for the
aMFG and ACC, where the activation remained relatively similar
across all 6 conditions. Details of corrected and uncorrected
statistics per ROI are listed in the Supplementary Material
(section 2.1).

Our key a priori hypothesis for a context-dependent system
was thatit would show a different neural response to the 2 double-
digit addition when experienced in the easy set than in the hard
set. As these 2 conditions are matched in stimuli and requisite
cognitive operations, any differences observed between these con-
ditions would reflect the effect of context. Crucially, we found no
difference in the MD network ROIin response to these 2 conditions
(t=0.31, P=0.76). A Bayesian model comparison using JASP (JASP
team, 2022) found a BFy value of 4.54, indicating that there
was 4.54 times more evidence in favor of the null model where
there is no difference between the 2 conditions than a model
where the 2 conditions differ, indicating substantial evidence in

favor of the null hypothesis. Furthermore, none of the individual
ROIs showed any significant differences between the matched
difficulty conditions (all [t|s < 1.19, all Ps > 0.98; FDR corrected for
multiple comparisons; BFg; =2.53 for the most significant ROI).

Whole-brain analysis

We also carried out a whole-brain analysis to examine other
potential regions that may show context-independent or context-
dependent activation. To do this, we fit a linear regression for
the 6 difficulty conditions in each voxel with the regressors
[1,2,3,3,4,5] and [1,2,3,1,2,3] (see Material and methods). Results
are shown in Fig. 5. For the context-independent regressor, there
was a significant positive association with activity throughout the
MD network, largely overlapping with the ROIs, as well as in the
visual cortex. A significant negative association was found with
activity in default mode network (DMN) regions, as these regions
showed decreased activation as absolute difficulty increased.
This observation is consistent with previous findings of the DMN
showing decreased activity during externally oriented, cognitively
demanding tasks (Raichle and Snyder 2007; Gilbert et al. 2012).
There were no significant activity associations for the context-
dependent regressor in either a positive or negative direction.
While the DMN was not the target of our a priori hypotheses
in this study, given its sensitivity to task difficulty and previous
indications that it may represent task context (Crittenden et al.
2015; Smith et al. 2018; Wen, Duncan et al. 2020; Wen, Mitchell,
et al. 2020), we nevertheless performed some exploratory analysis
to examine DMN region responses, as detailed in the Supplemen-
tary Material (section 5), by replicating the analyses performed
the MD ROIs. These analyses correspond to the findings of the
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Fig. 5. Whole-brain voxelwise regression showing significant associations to absolute, context-independent levels of difficulty. Colors indicate t values,
with warm and cool scales indicating positive and negative tails, respectively. The activation maps are thresholded at FDR < 0.025 per tail.

whole-brain analyses and suggest that the univariate activity of
the DMN is aligned with the context-independent model, showing
increased deactivation with increased task difficulty (Supplemen-
tary Material, sections 5.1-5.2).

Finally, as the matched difficulty conditions may be the most
sensitive test for context-dependent effects, we also directly com-
pared the high difficulty level in the easy set and the low difficulty
level in the hard set, at the whole-brain level. No region showed
significant differences between the two conditions at FDR < 0.05
in either direction. Thus, we obtained evidence only for context-
independent coding of difficulty.

Univariate activation when switching difficulty
contexts
ROI analysis

Figure 6 shows the average MD response to the 2 sets of math
problems as a function of the difficulty of the previous trial set

during the processing of the math problem. We first performed
a previous difficulty (easy vs. hard) x current difficulty (easy vs.
hard) ANOVA on the combined MD ROL. To further examine dif-
ferences between ROIs, we conducted a previous difficulty (easy
vs. hard) x current (easy vs. hard) x ROI (7 MD ROIs) ANOVA.

The MD network ROI showed a significant main effect of cur-
rent difficulty (F(1,24)=17.05, P<0.001), which was a result of
higher activation when performing math problems from the hard
set. There was no main effect of previous difficulty (F(1,24) =0.51,
P=0.48, BFy;=2.88) or previous difficulty x current difficulty
interaction (F(1,24) =0.47, P=0.50, BFp; =2.58). In the ANOVA with
the additional factor of ROI, we found a significant main effect
of current difficulty (F(1,24)=12.85, P=0.001) and a significant
main effect of ROI (F(6,144) = 74.09, P < 0.001), but no main effect of
previous difficulty (F(1,24) =0.93, P=0.35, BF¢; =5.69). There was a
current difficulty x ROl interaction (F(6,144)=6.62, P < 0.001), but
no previous difficulty x ROI (F(6,144)=1.13, P=0.35, BFo; = 382.39),
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previous difficulty x current difficulty (F(6,144)=0.35, P=0.56,
BFg1 =11.04), or previous difficulty x current difficulty x ROl inter-
action (F(6,144)=0.09, P> 0.99, BFo; = 1.59 x 10°). Separate previ-
ous difficulty x current difficulty ANOVAs on each of the MD
ROIs showed that similar to the previous GLM, all ROIs, except
for the aMFG and ACC (both Fs(1,24) <3.52, P>0.07) showed a
main effect of difficulty (all Fs(1,24) > 6.79, all Ps < 0.02). The main
effects of difficulty were driven by higher activation during the
execution of hard versus easy math problems. Details of corrected
and uncorrected statistics per ROI are listed in the Supplementary
Material (section 2.2).

We additionally examined whether the MD network was
sensitive to previous trial difficulty during the context cue, as
presented in the Supplementary Material (section 1.1). Results
showed some regions within the MD network, including the
ACC, pdLFC, and pMFG, displayed increased activation when the
current context cue signaled an upcoming hard math problem.
Moreover, the ACC and pdLFC may be sensitive to the previous
difficulty context during the cue, as indicated by increased acti-
vation to the context cue if the previous trial came from the easy
set (Supplementary Material, section 1.1). Exploratory analysis of
these contrasts in the DMN is presented in the Supplementary
Material (section 5.3), which suggested that the DMN may be sen-
sitive to difficulty context during cue processing; however, during
task execution, we were only able to identify DMN sensitivity
towards the current and not previous difficulty context.

In summary, these results suggest that some regions within
the MD network may be sensitive to difficulty context during
cue processing; however, during task execution, the MD network
seemed only sensitive to the current difficulty level, unaffected
by the context of task difficulty on the previous trial.

Whole-brain analysis

We examined responses including the main effect of previous
difficulty, main effect of current difficulty, switching to an easy set
versus repeating an easy set, and switching to a hard set versus
repeating a hard set at the whole-brain level to examine possible
effects outside of the MD network. These contrasts correspond to
the components of a previous difficulty (easy vs. hard) x current
difficulty (easy vs. hard) ANOVA. Results from this whole-brain
analysis are presented in Supplementary Fig. S2.

During the math problem, no brain region was found to show
a main effect of previous difficulty. There was significant acti-
vation throughout the MD network, as well as in the visual
cortex, for hard versus easy problems. Significant activation was
found in DMN for easy versus hard problems. No regions were
identified when switching to an easy set versus repeating an
easy set, nor its reverse contrast. Finally, no regions were iden-
tified when switching to a hard set versus repeating a hard set,
although the thalamus and claustrum were more activated when
repeating a hard set compared to switching from an easy to
hard set.

Analyses performed during the contextual cue are also pre-
sented in Supplementary Fig. S2.

In summary, we identified several regions both within and
outside the MD network that show context dependence during
the context cue, such that previously experienced task difficulty
influenced activation levels in these regions during the cue. How-
ever, no brain region showing context dependence during task
execution was identified. Instead, we found that the MD network
was more active when solving math problems from the hard
compared to easy set. These results suggest that MD activity
during task execution is context-independent.
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RSA results
ROI analysis

We first performed RSA on the MD ROIs, fitting the rank-
transformed brain RDM with the rank-transformed context-
independent, context-dependent, and pixel RDMs using a linear
regression on each participant. Results are shown in Fig.7. In
all MD ROIs, the beta coefficients of the context-independent
model RDM were significantly greater than zero, indicating a
relationship with the brain RDM (all ts > 4.91, all Ps <0.001; FDR
corrected for multiple comparisons) and provided a significantly
better fit than the context-dependent model RDM (all ts > 3.74,
all Ps <0.01; FDR corrected), the coefficients of which were not
significantly greater than zero (all |t|s <2.09, all Ps>0.15; FDR
corrected; BFp; =0.39 for the most significant ROI). Finally, the
beta coefficients for the pixel RDM also did not differ significantly
from zero (all [t|s < 1.56, all Ps > 0.20; FDR corrected; BFg; =0.88 for
the most significant ROI). For the combined MD network ROI, the
same pattern was observed. The beta coefficients of the context-
independent model RDM were significantly greater than zero
(t=22.59, P<0.001) and had a significantly better fit than the
context-dependent model RDM (t=14.75, P <0.001), which was
not significantly greater than zero (t=1.10, P=0.14, BFy; =1.62).
The beta coefficients for the pixel RDM were also not significantly
greater than zero (t=1.70, P > 0.05, BFy; =0.72). Details of corrected
and uncorrected statistics per ROI are listed in the Supplementary
Material (section 2.3).

The above analyses were also performed on the DMN in the
Supplementary Material (section 5.4). Results suggested that in
all DMN ROIs, the beta coefficients of the context-independent
model RDM were significantly greater than zero. Additionally, in
some DMN ROIs, including the dMPFC, LTC, TPJ, Rsp, as well as the
entire DMN as a single ROI, we found that the coefficients of the
context-dependent model RDM were also significantly above zero.
These results suggest that the DMN may exhibit both context-
independent and context-dependent coding of difficulty.

Finally, for the MD network, we also independently compared
the LDC values of the matched difficulty conditions, arguably
providing the most sensitive test for context-dependent effects.
We did this by testing whether the distance between the high
difficulty level in the easy set and the low difficulty level in
the hard set was significantly greater than zero across subjects.
Across all MD ROIs, we did not find any ROI showing this effect
(all ts < 1.06, all Ps <0.97, BFy1 =1.72 for the most significant ROI).
Details of corrected and uncorrected statistics per ROI are listed
in the Supplementary Material (section 2.4). The distance between
the matched conditions in the MD network ROI was also not sig-
nificantly greater than zero (t=-1.23, P=0.89, BFp; =9.64). Thus,
we were unable to find evidence for context-dependent coding in
the MD network.

Whole-brain searchlight

To explore the effects of context-independent and context-
dependent coding effects outside the a priori MD ROIs, we
carried out an RSA searchlight analysis. Results are shown
in Fig. 8. Context-independent representation of difficulty was
significant across large areas of the brain, although it was
strongest in the visual cortex and local peaks in MD and DMN
regions (Fig. 8A). This aligns with our univariate results of strong
context-independent activation in these regions. We note that
the large swathes of activation may also partially be due to
spatial smoothing from the 10 mm searchlight. We observed
several regions showing context-dependent coding, including the

inferior parietal lobule, paracentral lobule, posterior insula, and
large areas of the visual cortex (Fig. 8B). Since these regions are
observed to be correlated with both context-independent and
context-dependent RDM models (which are largely orthogonal),
we suggest that they show sensitivity to both absolute difficulty
and the contextual difficulty in which the task was presented.
We did not find any significant regions that corresponded to the
pixel RDM, thus ruling out that any of the above findings reflect
merely pixel-by-pixel feature similarity.

Discussion

The present study examined for the first time whether activity
in the MD network is responsive to task difficulty in a context-
dependent or context-independent manner. Univariate activa-
tions as well as RSA analysis suggested that the response of
the MD network to difficulty is context-independent, such that
activations increased with the absolute difficulty of the task and
representational dissimilarity increased with the difference of
difficulty between levels, rather than being re-scaled between
contexts comprising easier or harder trials. Accordingly, identical
difficulty levels across the 2 contexts elicited equivalent MD activ-
ity, even though they represented the highest difficulty level in the
easy context and the lowest difficulty level in the hard context.
These results are inconsistent with context-dependent effects
observed in value and sensory processing but are consistent with
the notion that strong MD activation during more difficult tasks
reflects the increased demand in integrating the components
of cognitive operations to solve the task at hand (Duncan 2013;
Duncan et al. 2020).

In everyday life, perceived difficulty may sometimes seem
relative to previous experiences. For example, if one completes a
mock exam that is harder than the actual test, the test will feel
easy; on the other hand, if one fails to adequately prepare, then
the test would feel hard (Bjork et al. 2013; Carpenter et al. 2020).
We found some effect of the previous trial on the current difficulty
context during the cue presentation in the ACC and pdLFC of the
MD network, as well as in the DMN. These results are consistent
with previous studies on sequence effects in the ACC and regions
in the prefrontal cortex in the conflict-control literature, where
an incongruent trial following a congruent trial elicits more acti-
vation than repeating an incongruent trial (Botvinick et al. 1999;
Carter etal. 2000; Durston et al. 2003; Kerns et al. 2004). Yet, during
the actual execution of the task, we were not able to identify
an effect of the previous context in any of the MD ROIs in the
present study, which again suggests MD is not sensitive to relative
difficulty.

Why would brain activity related to cognitive demand be
mostly context-independent when value-based and sensory
processing commonly display range adaptation effects? One
common explanation for context-dependent coding is that
neural computation is costly and maximum firing rates are
limited, so an efficient neural code should adapt to the range
of possible values within the present context (Padoa-Schioppa
2009; Louie and Glimcher 2012; Cox and Kable 2014; Glimcher
2014). This allows humans to represent and compare seemingly
unlimited ranges of values, from fractions to trillions, without
much increase in effort or cost to performance. However, our
capacity for high-level cognitive operations is inherently limited,
and when cognitive processes become overloaded, there is
degradation in performance (Norman and Bobrow 1975). In other
words, in cognitive tasks, such as solving an arithmetic problem,
performance is a function of the amount of cognitive resources
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Fig. 8. A) Context-independent and (B) context-dependent coding of difficulty across the whole brain, calculated using local spherical searchlights, and

thresholded at FDR < 0.05.
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available and thus hits a natural limit (Kahneman 1973; Norman
and Bobrow 1975; Marois and Ivanoff 2005). As previous studies
have shown, MD network activity may reflect the degree to
which performance can be improved by increasing attentional
investment (Han and Marois 2013; Wen et al. 2018). If this were
the case, then MD activity should be context-independent, as
other trials should not affect the number of cognitive processes
required for any given trial. Another way of looking at this is
that, unlike the vast range of possible rewards values or sensory
stimulation, the range of cognitive processing demand that can
be handled by the brain is so limited that contextual adaptation
for range coverage is unnecessary.

We note that our experiment is an event-related design, such
that difficulty changed trial by trial. It, therefore, remains pos-
sible that MD activity might adapt to different difficulty ranges
after longer exposure. Several studies have shown that task-
related brain activity in MD regions may decrease after practice
on a task (Garavan et al. 2000; Jansma et al. 2001; Milham et al.
2003; Landau et al. 2004), presumably reflecting increased neu-
ral efficiency, with fewer neural resources required to achieve
the same level of performance. Thus, future studies may test
whether MD activity would be sensitive to context in a blocked
design (Bavard et al. 2021) or with separate groups of subjects
experiencing different ranges of difficulty levels. Having said
that, it should be noted that the coding of reward outcomes in
a near-identical event-related design was found to be context-
dependent (Nieuwenhuis et al. 2005). We can therefore conclude
that trial-by-trial changes in context do not generally pre-empt
context adaptation effects and that the processing of task diffi-
culty seems to fundamentally differ from the processing of reward
outcomes.

Using whole-brain analysis, we furthermore explored whether
there were regions outside the MD network that may show context
sensitivity to task difficulty. We did not find any regions that acti-
vated in accordance with the univariate predictions of a context-
dependent model. However, our RSA searchlight uncovered sev-
eral regions, most notably the inferior parietal lobule, paracentral
lobule, posterior insula, and large areas of the visual cortex whose
activity patterns were associated with context-dependent coding.
Additional exploratory analysis on the DMN revealed several
ROIs, as well as the DMN as a combined ROI, to show context-
dependent coding, consistent with previous studies showing con-
text representation in the DMN (Crittenden et al. 2015; Smith et al.
2018; Wen, Duncan, et al. 2020; Wen, Mitchell, et al. 2020). It has
been proposed that the posterior parietal cortex encodes abstract
relational information among stimuli and the structure of the
environment (Summerfield et al. 2019). Furthermore, regions in
the medial temporal lobe have been identified to map the con-
ceptual space of a task (Theves et al. 2020). These results are
in line with the notion that the brain is capable of matching
relational knowledge of levels (low, medium, and high) across
different contexts (Sheahan et al. 2021).

Previous studies have shown that mental effort is costly and
has negative utility (Kool and Botvinick 2018), and when given
the choice, participants typically choose tasks or contexts with
low compared to high cognitive demand (Kool et al. 2010). It
would therefore seem plausible that some reward-sensitive (cost-
sensitive) brain regions should track task difficulty or cognitive
effort. Our univariate analysis found that MD network regions
showed increased activation and DMN regions showed decreased
activation as the absolute difficulty of the task increased, regard-
less of context. Meta-analyses of the valuation network have
documented that it has substantial overlap with several regions

in the MD and DMN networks, including the ACC and Al in the
MD network, and vmPFC and PCC in the DMN network (Levy and
Glimcher 2012; Bartra et al. 2013), so these regions may have
been involved in tracking effort cost in the current paradigm.
However, it is difficult to evaluate where coding of effort costs
is located in the brain without fully crossing reward and effort
variables to decorrelate reward and difficulty (Westbrook et al.
2019). As our study did not manipulate reward, we cannot know
with certainty the relationship between the 2 variables in the
present data. For example, it is possible that correctly solving a
hard problem could be more rewarding (e.g. less boring, a bigger
accomplishment) than solving an easy problem (Wu et al. 2021).
We also acknowledge that failure to detect a context-dependent
effect under the null hypothesis significance testing does not
necessarily indicate a lack of context coding.

Context-dependent representation in the brain seems ubiqui-
tous in many domains, including sensory processing (Carandini
and Heeger 2011; Cheadle et al. 2014), temporal perception
(Walker et al. 1981; Murai et al. 2016), reward (Cox and Kable
2014; Bavard et al. 2018), and value (Sheahan et al. 2021).
However, our study showed that the response of the MD network
to task difficulty may be an exception to the norm. While
context-dependent coding can be useful to compare values
within the currently relevant context, it often leads to irrational
choices, such as picking a suboptimal option under certain
manipulations (Kahneman and Tversky 1979; Tversky and
Simonson 1993; Chung et al. 2017; Bavard et al. 2021). Absolute
coding is important for consistent and rational choices (Lee
et al. 2007; Padoa-Schioppa and Assad 2007; Grabenhorst and
Rolls 2009). In one study, Chung et al. (2017) found stronger
functional connectivity between frontal and reward regions
when participants successfully overrode the decoy effect and
made unbiased choices. Accordingly, it is possible that context-
dependent coding in some areas, such as sensory and reward
regions, combined with context-independent coding in MD
regions, together contribute to adaptive human behavior.
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